The proximal islet-specific glucose-6-phosphatase catalytic subunit-related protein autoantigen promoter is sufficient to initiate but not maintain transgene expression in mouse islets in vivo.
نویسندگان
چکیده
We have previously reported the discovery of an islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) that is predominantly expressed in islet beta-cells. IGRP has recently been identified as a major autoantigen in a mouse model of type 1 diabetes. The analysis of IGRP-chloramphenicol acetyltransferase (CAT) fusion gene expression in transiently transfected islet-derived hamster insulinoma tumor and betaTC-3 cells revealed that the promoter region located between -306 and +3 confers high-level reporter gene expression. To determine whether this same promoter region is sufficient to confer islet beta-cell-specific gene expression in vivo, it was ligated to a beta-galactosidase reporter gene, and transgenic mice expressing the resulting fusion gene were generated. In two independent founder lines, this -306 to +3 promoter region was sufficient to drive beta-galactosidase expression in newborn mouse islets, predominantly in beta-cells, which was initiated during the expected time in development, around embryonic day 12.5. However, unlike the endogenous IGRP gene, beta-galactosidase expression was also detected in the cerebellum. Moreover, beta-galactosidase expression was almost completely absent in adult mouse islets, suggesting that cis-acting elements elsewhere in the IGRP gene are required for determining appropriate IGRP tissue-specific expression and for the maintenance of IGRP gene expression in adult mice.
منابع مشابه
Long-range enhancers are required to maintain expression of the autoantigen islet-specific glucose-6-phosphatase catalytic subunit-related protein in adult mouse islets in vivo.
OBJECTIVE Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) is selectively expressed in islet beta-cells and is a major autoantigen in both mouse and human type 1 diabetes. This study describes the use of a combination of transgenic and transfection approaches to characterize the gene regions that confer the islet-specific expression of IGRP. RESEARCH DESIGN AND ME...
متن کاملLocal Autoantigen Expression as Essential Gatekeeper of Memory T-Cell Recruitment to Islet Grafts in Diabetic Hosts
It is generally believed that inflammatory cues can attract noncognate, "bystander" T-cell specificities to sites of inflammation. We have shown that recruitment of naive and in vitro activated autoreactive CD8⁺ T cells into endogenous islets requires local autoantigen expression. Here, we demonstrate that absence of an autoantigen in syngeneic extrapancreatic islet grafts in diabetic hosts ren...
متن کاملCharacterization of the Mouse Islet-Specific Glucose-6-Phosphatase Catalytic Subunit–Related Protein Gene Promoter by In Situ Footprinting Correlation With Fusion Gene Expression in the Islet-Derived bTC-3 and Hamster Insulinoma Tumor Cell Lines
Glucose-6-phosphatase (G6Pase) is a multicomponent system located in the endoplasmic reticulum comprising a catalytic subunit and transporters for glucose-6-phosphate, inorganic phosphate, and glucose. We have recently cloned a novel gene that encodes an islet-specific G6Pase catalytic subunit–related protein (IGRP) (Ebert et al., Diabetes 48:543–551, 1999). To begin to investigate the molecula...
متن کاملEffector-memory T cells develop in islets and report islet pathology in type 1 diabetes.
CD8(+) T cells are critical in human type 1 diabetes and in the NOD mouse. In this study, we elucidated the natural history of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific CD8(+) T cells in NOD diabetes using MHC-tetramer technology. IGRP206-214-specific T cells in the peripheral lymphoid tissue increased with age, and their numbers correlated with insu...
متن کاملDeletion of the G6pc2 Gene Encoding the Islet-Specific Glucose-6-Phosphatase Catalytic Subunit–Related Protein Does Not Affect the Progression or Incidence of Type 1 Diabetes in NOD/ShiLtJ Mice
OBJECTIVE Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP), now known as G6PC2, is a major target of autoreactive T cells implicated in the pathogenesis of type 1 diabetes in both mice and humans. This study aimed to determine whether suppression of G6p2 gene expression might therefore prevent or delay disease progression. RESEARCH DESIGN AND METHODS G6pc2(-/-) mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 53 7 شماره
صفحات -
تاریخ انتشار 2004